Ejemplos de programación en GPU Volume Rendering

Ciro Durán ciro@ldc.usb.ve

CI-5321 - Computación Gráfica II Universidad Simón Bolívar

7 de marzo de 2007

- 1 Introducción al problema de Volume Rendering
 - Motivación
 - Definición
 - Técnicas de VR

- 2 Implementación de un Volume Renderer
- 3 Conclusión

Motivación

¿Cuál es el problema?

Se dispone de una gran cantidad de datos. Estos datos no describen un cuerpo geométrico en base a vértices y aristas. Estos datos se asemejan más a un volumen de datos: una función con varias variables, con la que se puede describir (por ejemplo) temperatura, densidad, velocidad, presión, divergencia, etc. dada una posición.

Definición

Volume Rendering

El área de Volume Rendering (rendering volumétrico, o VR por sus siglas en inglés) estudia la proyección bidimensional de datos tridimensionales. En el caso de esta tesis, se desea visualizar datos pertenecientes a una Tomografía Axial Computarizada (TAC) de la mitad superior de una cabeza.

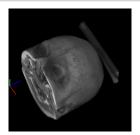


Figura: Un ejemplo de VR

Técnicas de Volume Rendering

Existen varias técnicas para hacer VR:

- Ray-casting
- Basado en texturas (2D, 3D)
- Representación de iso-superficies
- Splatting
- Transformación Shear-Warp

Modelo óptico

Los dos primeros están basados en un modelo óptico que considera los datos del volumen como partículas con un color y opacidad dados. La luz que atraviesa estas partículas es absorbida, o las particulas mismas pueden emitir luz, proceso resumido en una integral que es el fundamento de nuestro estudio de VR, y de otros.

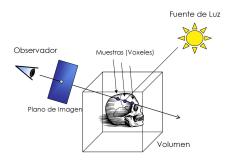


Figura: Esquema del modelo óptico

Raycasting

Blablabla

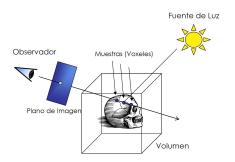
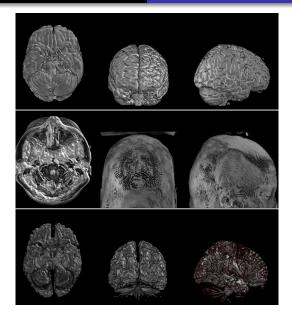



Figura: Esquema de raycasting

Basado en texturas

Blabalbal

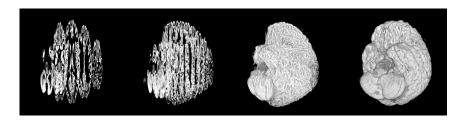


Figura: Composición de texturas

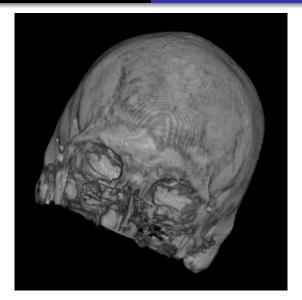


Figura: Imagen con texturas 2D

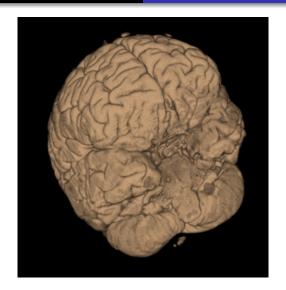


Figura: Imagen con texturas 3D

Implementación de un Volume Renderer

Retos identificados a simple vista

Gran cantidad de datos

¿Por qué es indicado usar GPU para VR?

• Procesamiento altamente paralelizable

Implementación de un Volume Renderer

Retos identificados a simple vista

- Gran cantidad de datos
- Cómputos complejos sobre estos datos

¿Por qué es indicado usar GPU para VR?

- Procesamiento altamente paralelizable
- Instrucciones...

Implementación de un Volume Renderer

Retos identificados a simple vista

- Gran cantidad de datos
- Cómputos complejos sobre estos datos
- Interactividad

¿Por qué es indicado usar GPU para VR?

- Procesamiento altamente paralelizable
- Instrucciones...

Alpha test

- Alpha test
- Diferencias de rendimiento por el tipo de textura (2D o 3D)

- Alpha test
- Diferencias de rendimiento por el tipo de textura (2D o 3D)
- Fill rate

- Alpha test
- Diferencias de rendimiento por el tipo de textura (2D o 3D)
- Fill rate
- Densidad de datos (Westermann)

¿Preguntas?

¿Dónde bajar estas láminas?

Estas láminas están disponibles en:

http://www.ciroduran.com/tesis/presentaciones

En el mismo sitio hay una página de contacto para preguntas específicas.